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Quadratic reciprocity and computing modular square
roots

In §2.8, we initiated an investigation of quadratic residues. This chapter continues
this investigation. Recall that an integer a is called a quadratic residue modulo a
positive integer # if gcd(a, n) = 1 and a = b* (mod n) for some integer b.

First, we derive the famous law of quadratic reciprocity. This law, while his-
torically important for reasons of pure mathematical interest, also has important
computational applications, including a fast algorithm for testing if an integer is a
quadratic residue modulo a prime.

Second, we investigate the problem of computing modular square roots: given a
quadratic residue @ modulo n, compute an integer b such that a = b*> (mod n). As
we will see, there are efficient probabilistic algorithms for this problem when # is
prime, and more generally, when the factorization of » into primes is known.

12.1 The Legendre symbol

For an odd prime p and an integer a with gcd(a, p) = 1, the Legendre symbol
(a | p) is defined to be 1 if a is a quadratic residue modulo p, and —1 otherwise. For
completeness, one defines (a | p) = 0if p | a. The following theorem summarizes
the essential properties of the Legendre symbol.
Theorem 12.1. Let p be an odd prime, and let a, b € 7Z.. Then we have:

(i) (a|p) = a?V/2 (mod p); in particular, (=1 | p) = (—=1)~D/%;

(i) (a | p)(b|p) = (ab| p);

(iii) a = b (mod p) implies (a | p) = (b | p);

(iv) 2] p) = (=)7~D/;

(v) if q is an odd prime, then (p | q) = (=1)"= T (¢ | p).

Part (i) of the theorem is just a restatement of Euler’s criterion (Theorem 2.21).

342
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As was observed in Theorem 2.31, this implies that —1 is a quadratic residue mod-
ulo p if and only if p = 1 (mod 4). Thus, the quadratic residuosity of —1 modulo p
is determined by the residue class of p modulo 4.

Part (ii) of the theorem follows immediately from part (i), and part (iii) is an
immediate consequence of the definition of the Legendre symbol.

Part (iv), which we will prove below, can also be recast as saying that 2 is a
quadratic residue modulo p if and only if p = +1 (mod 8). Thus, the quadratic
residuosity of 2 modulo p is determined by the residue class of p modulo 8.

Part (v), which we will also prove below, is the law of quadratic reciprocity.
Note that when p = ¢, both (p | ¢) and (g | p) are zero, and so the statement of part
(v) is trivially true—the interesting case is when p # ¢, and in this case, part (v)
is equivalent to saying that

p—1g-1
(rla)glp =D,

Thus, the Legendre symbols (p | ¢) and (g | p) have the same values if and only

if either p = 1 (mod 4) or ¢ = 1 (mod 4). As the following examples illustrate,

this result also shows that for a given odd prime ¢, the quadratic residuosity of ¢

modulo another odd prime p is determined by the residue class of p modulo either

g or 4q.

Example 12.1. Let us characterize those primes p modulo which 5 is a quadratic
residue. Since 5 = 1 (mod 4), the law of quadratic reciprocity tells us that
S 1] p = (p]| 5. Now, among the numbers +1, +2, the quadratic residues
modulo 5 are +1. It follows that 5 is a quadratic residue modulo p if and only if
p = 1 (mod 5). This example obviously generalizes, replacing 5 by any prime
qg = 1 (mod 4), and replacing the above congruences modulo 5 by appropriate
congruences modulo ¢g. O

Example 12.2. Let us characterize those primes p modulo which 3 is a quadratic
residue. Since 3 # 1 (mod 4), we must be careful in our application of the law of
quadratic reciprocity. First, suppose that p = 1 (mod 4). Then (3 | p) = (p | 3),
and so 3 is a quadratic residue modulo p if and only if p = 1 (mod 3). Second,
suppose that p Z 1 (mod 4). Then (3 | p) = —(p | 3), and so 3 is a quadratic
residue modulo p if and only if p = —1 (mod 3). Putting this all together, we see
that 3 is quadratic residue modulo p if and only if

p=1(mod4) and p =1 (mod 3)
or
p=-1(mod4) and p=—1 (mod 3).

Using the Chinese remainder theorem, we can restate this criterion in terms of
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residue classes modulo 12: 3 is quadratic residue modulo p if and only if p =
+1 (mod 12). This example obviously generalizes, replacing 3 by any prime
q = —1 (mod 4), and replacing the above congruences modulo 12 by appropriate
congruences modulo 4q. O

The rest of this section is devoted to a proof of parts (iv) and (v) of Theo-
rem 12.1. The proof is completely elementary, although a bit technical.

Theorem 12.2 (Gauss’ lemma). Let p be an odd prime and let a be an integer not
divisible by p. Define a; := jamod p for j = 1,...,(p — 1)/2, and let n be the
number of indices j for which a; > p/2. Then (a | p) = (—=1)".

Proof. Letry,...,r, denote the values a; that exceed p/2, and let sy, ..., sx denote
the remaining values a;. The r;’s and s;’s are all distinct and non-zero. We have
O<p-ri<p/2fori=1,...,n, and no p —r; is an s;; indeed, if p — r; = s;,
then s; = —r; (mod p), and writing s; = ua mod p and r; = va mod p, for some
u,v=1,...,(p—1)/2, we have ua = —va (mod p), which implies u = —v (mod p),
which is impossible.

It follows that the sequence of numbers sy,...,Sk,p — F1,...,D — Fp 1S just a
reordering of 1,...,(p — 1)/2. Then we have

((p=D/2D! =51 s1(=r1) -+ (=1p)
=(=)"sp--spgryocory
= (=1)"((p— 1)/2)! a? V7 (mod p),
and canceling the factor ((p — 1)/2)!, we obtain a?~1/2 = (—1)" (mod p), and the
result follows from the fact that (a | p) = a®~P/2 (mod p). O

Theorem 12.3. If p is an odd prime and gcd(a,2p) = 1, then (a | p) = (—1)
where 1 = 3" | ja/p). Also, (2| p) = (=1)#*=V/8,

Proof. Let a be an integer not divisible by p, but which may be even, and let us
adopt the same notation as in the statement and proof of Theorem 12.2; in par-
ticular, ay,...,®p-1)/2, F1,-..,Fn, and s1,..., s, are as defined there. Note that
ja=plja/p] +aj,forj=1,...,(p—1)/2, so we have

(p-1)/2 (r-D/2

Z ja= Z pL/a/pJ+er+Zsj (12.1)

Moreover, as we saw in the proof of Theorem 12.2, the sequence of numbers
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Sly---»Sk, P —F1,...,p—Fpis areordering of 1,...,(p— 1)/2, and hence
(»-1/2 n k n k
Z j:Z(p—rj)+23j:np—2rj+2sj. (12.2)
j=1 Jj=1 Jj=1 Jj=1 j=1
Subtracting (12.2) from (12.1), we get
(r-1)/2 (r-1)/2 n
@1 Y j= p< > Lia/p) - n) +2Y . (12.3)
j=1 j=1 j=1
Note that
(r—D/2 2
_p -1
= 12.4
2 = (12.4)
j=1
which together with (12.3) implies
2 02
(a—1)E —= Z‘{ Lja/p] — n (mod 2). (12.5)
Jj=
If ais odd, (12.5) implies
(-D/2
n= lja/p] (mod 2). (12.6)
j=1
If a =2,then [2j/p| =0forj=1,...,(p—1)/2, and (12.5) implies
-1
n=2"" (mod?2). (12.7)

The theorem now follows from (12.6) and (12.7), together with Theorem 12.2. O

Note that this last theorem proves part (iv) of Theorem 12.1. The next theorem
proves part (V).

Theorem 12.4. If p and q are distinct odd primes, then
p—1 g—1
Ploglp =D 7.
Proof. Let S be the set of pairs of integers (x,y) with 1 < x < (p — 1)/2 and
1 <y < (g—1)/2. Note that S contains no pair (x,y) with gx = py, so let
us partition .S into two subsets: S contains all pairs (x,y) with gx > py, and
S5 contains all pairs (x,y) with gx < py. Note that (x,y) € S if and only if
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l<x<(p-1)/2and 1<y < lgx/pl. So|Si| = 7" gx/p|. Similarly,
|:S5| = Z(q 1)/szy/qJ So we have

(»-D/2 (g-1)/2
p—1lg

5 =ISI=1S+ 1S = X lax/pl+ Y v/l

x=1 y=1

and Theorem 12.3 implies

Plaglp) =(=DT7. O

EXERCISE 12.1. Characterize those odd primes p for which (15 | p) = 1, in terms
of the residue class of p modulo 60.

EXERCISE 12.2. Let p be an odd prime. Show that the following are equivalent:
(@ (=2|p =1
(b) p=1or3 (mod 8);
(c) p=r*+2t*forsomer,t € Z.

12.2 The Jacobi symbol
Let a, n be integers, where n is positive and odd, so that n = gy - - - qx, where the
g;’s are odd primes, not necessarily distinct. Then the Jacobi symbol (a | n) is
defined as
(aln):=(alq)---(alqp,

where (a | g;) is the Legendre symbol. By definition, (a | 1) = 1 for all
a € Z. Thus, the Jacobi symbol essentially extends the domain of definition of
the Legendre symbol. Note that (a | n) € {0, 1}, and that (a | n) = 0 if and only
if ged(a, n) > 1. The following theorem summarizes the essential properties of the
Jacobi symbol.

Theorem 12.5. Let m, n be odd, positive integers, and let a, b € Z. Then we have:
1) (ab|n)=(aln)(b|n);
(i) (a | mn) = (a|m)(a|n);
(iii) a = b (mod n) implies (a | n) = (b | n);
(iv) (=1]n) = (=1)"=D/2;
(V) (2 n) = (=118
(vi) (m | n) = (=1)*T*T (n | m).
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Proof. Parts (i)—(iii) follow directly from the definition (exercise).
For parts (iv) and (vi), one can easily verify (exercise) that for all odd integers
ni,...,nN,

k
Y (= 1)/2= (ny -+ n = 1)/2 (mod 2).
i=1
Part (iv) easily follows from this fact, along with part (ii) of this theorem and part
(i) of Theorem 12.1 (exercise). Part (vi) easily follows from this fact, along with
parts (i) and (ii) of this theorem, and part (v) of Theorem 12.1 (exercise).
For part (v), one can easily verify (exercise) that for odd integers 1, ..., 1,

k
D (= 1)/8=(n}---n; —1)/8 (mod 2).
i=1
Part (v) easily follows from this fact, along with part (ii) of this theorem, and part
(iv) of Theorem 12.1 (exercise). O

As we shall see later, this theorem is extremely useful from a computational
point of view — with it, one can efficiently compute (a | n), without having to
know the prime factorization of either a or n. Also, in applying this theorem it is
useful to observe that for all odd integers m, n,

o ()" D2 =1 & n=1 (mod4);
o (-D"D/8 =1 — n==I (mod 8);
o (=1)m=D/D(=D/2) = | « m=1 (mod4)orn=1(mod4).

Suppose a is a quadratic residue modulo n, so that @ = b*> (mod n), where
gced(a,n) = 1 = ged(b, n). Then by parts (iii) and (i) of Theorem 12.5, we have
(a|n) = (| n) = (b|n)? = 1. Thus, if a is a quadratic residue modulo n, then
(a | n) = 1. The converse, however, does not hold: (a | n) = 1 does not imply that
a is a quadratic residue modulo n (see Exercise 12.3 below).

It is sometimes useful to view the Jacobi symbol as a group homomorphism. Let
n be an odd, positive integer. Define the Jacobi map

Jo:  Z, > {£1}
lal, = (a | n).
First, we note that by part (iii) of Theorem 12.5, this definition is unambiguous.
Second, we note that since gcd(a,n) = 1 implies (a | n) = £1, the image of J,
is indeed contained in {£1}. Third, we note that by part (i) of Theorem 12.5, J,,

is a group homomorphism. Since J, is a group homomorphism, it follows that its
kernel, Ker J,,, is a subgroup of Z;'.
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EXERCISE 12.3. Let n be an odd, positive integer, and consider the Jacobi map
Jn.

(a) Show that (Z*)? C Ker J,..

(b) Show that if n is the square of an integer, then Ker J,, = Z.

(c) Show that if n is not the square of an integer, then [Z;, : Ker J,] = 2 and

[Ker J, : (Zﬁ)z] = 21 where r is the number of distinct prime divisors of
n.

EXERCISE 12.4. Let p and ¢q be distinct primes, with p = ¢ = 3 (mod 4), and let
n:=pq.
(a) Show that [-1], € KerJ, \ (Z:)z, and from this, conclude that the cosets
of (Z:)2 in Ker J,, are the two distinct cosets (Z,“;)2 and [—l]n(Z’,j)z.
(b) Let § € Z* \ Ker J,,. Show that the map from {0, 1} x {0, 1} x (Z*)? to Z}
that sends (a, b, y) to 8%(— 1)’y is a bijection.

12.3 Computing the Jacobi symbol

Suppose we are given an odd, positive integer n, along with an integer a, and we
want to compute the Jacobi symbol (a | n). Theorem 12.5 suggests the following
algorithm:

o« 1
repeat
// loop invariant: n is odd and positive

a < amodn
if a = 0 then
if n = 1 then return o else return 0

compute a’, h such that a = 2"4’ and a’ is odd
if h # 0 (mod 2) and n # £1 (mod 8) then 6 <« —o
ifa 21 (mod4) andn £ 1 (mod 4) then 6 « —0c
(a,n) < (n,d)

forever

That this algorithm correctly computes the Jacobi symbol (a | r) follows directly
from Theorem 12.5. Using an analysis similar to that of Euclid’s algorithm, one
easily sees that the running time of this algorithm is O(len(a) len(n)).

EXERCISE 12.5. Develop a “binary” Jacobi symbol algorithm, that is, one that
uses only addition, subtractions, and “shift” operations, analogous to the binary
gcd algorithm in Exercise 4.6.
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EXERCISE 12.6. This exercise develops a probabilistic primality test based on the
Jacobi symbol. For odd integer n > 1, define

Gyi={aeZ :a" V2= J ()},

where J,, : Z); — {£1} is the Jacobi map.
(a) Show that G, is a subgroup of Z;.
(b) Show that if n is prime, then G, = Z;.
(c) Show that if n is composite, then G, C Z.

(d) Based on parts (a)—(c), design and analyze an efficient probabilistic pri-
mality test that works by choosing a random, non-zero element a € Z,, and
testing if a € G,.

12.4 Testing quadratic residuosity

In this section, we consider the problem of testing whether a is a quadratic residue
modulo n, for given integers a and n, from a computational perspective.

12.4.1 Prime modulus

For an odd prime p, we can test if an integer a is a quadratic residue modulo p by
either performing the exponentiation ="/ mod p or by computing the Legendre
symbol (a | p). Assume that 0 < a < p. Using a standard repeated squaring
algorithm, the former method takes time O(len(p)?), while using the Euclidean-
like algorithm of the previous section, the latter method takes time O(len(p)?). So
clearly, the latter method is to be preferred.

12.4.2 Prime-power modulus

For an odd prime p, we know that a is a quadratic residue modulo p¢ if and only
if a is a quadratic residue modulo p (see Theorem 2.30). So this case immediately
reduces to the previous one.

12.4.3 Composite modulus

For odd, composite n, if we know the factorization of n, then we can also determine
if a is a quadratic residue modulo n by determining if it is a quadratic residue
modulo each prime divisor p of n (see Exercise 2.39). However, without knowledge
of this factorization (which is in general believed to be hard to compute), there is
no efficient algorithm known. We can compute the Jacobi symbol (a | n); if this



350 Quadratic reciprocity and computing modular square roots

is —1 or 0, we can conclude that a is not a quadratic residue; otherwise, we cannot
conclude much of anything.

12.5 Computing modular square roots

In this section, we consider the problem of computing a square root of a modulo #,
given integers a and n, where a is a quadratic residue modulo ».

12.5.1 Prime modulus

Let p be an odd prime, and let a be an integer such that 0 < a < pand (a | p) = 1.
We would like to compute a square root of @ modulo p. Let « := [a], € Zj, so
that we can restate our problem as that of finding f € Z, such that p? = a, given
a € (L)~

We first consider the special case where p = 3 (mod 4), in which it turns out that
this problem can be solved very easily. Indeed, we claim that in this case

B = gPrh/4

is a square root of « —note that since p = 3 (mod 4), the number (p + 1)/4 is an
integer. To show that f> = a, suppose a = /> for some f € Z,. We know that
there is such a f, since we are assuming that a € (Z;)Z. Then we have

f = gD/ = Gl Z 2 = g

where we used Fermat’s little theorem for the third equality. Using a repeated-
squaring algorithm, we can compute g in time O(len(p)?).

Now we consider the general case, where we may have p # 3 (mod 4). Here
is one way to efficiently compute a square root of @, assuming we are given, in
addition to a, an auxiliary input y € Zj; \ (Z;‘;)2 (how one obtains such a y is
discussed below).

Let us write p—1 = 2"m, where m is odd. For every § € Z*, 8™ has multiplicative
order dividing 2". Since o?™'m = 1, ™ has multiplicative order dividing 2/~!.
Since yzh_]’" = —1, y™ has multiplicative order precisely 2". Since there is only
one subgroup of Z;, of order 2" it follows that y™ generates this subgroup, and that
a™ = y™* for some integer x, where 0 < x < 2" and x is even. We can find x
by computing the discrete logarithm of a” to the base y™, using the algorithm in
§11.2.3. Setting k = y™*/2, we have

K =a .

We are not quite done, since we now have a square root of @™, and not of a.
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Since m is odd, we may write m = 2¢ + 1 for some non-negative integer ¢. It then
follows that

2a—2t — ma—Zt — m—2t

(ka™")? =« a

Thus, ka™ is a square root of a.
Let us summarize the above algorithm for computing a square root of a € (Z}‘;)z,
assuming we are giveny € Z,, \ (Z;)z, in addition to a:

compute positive integers m, h such that p — 1 = 2"m with m odd
7// «— 7/}'t’l’ a/ «— am

compute x < log, a' //note that 0 < x < 2" and x is even

ﬂ - (y/)x/Za— Lm/2]

output f

The work done outside the discrete logarithm calculation amounts to just a hand-
ful of exponentiations modulo p, and so takes time O(len(p)?). The time to com-
pute the discrete logarithm is O(h len(h) len(p)?). So the total running time of this
procedure is

O(len(p)® + hlen(h)len(p)?).

The above procedure assumed we had at hand a non-square y. If # = 1, which
means that p = 3 (mod 4), then (=1 | p) = —1, and so we are done. However, we
have already seen how to efficiently compute a square root in this case.

If h > 1, we can find a non-square y using a probabilistic search algorithm.
Simply choose y at random, test if it is a square, and if so, repeat. The proba-
bility that a random element of Zj is a square is 1/2; thus, the expected number
of trials until we find a non-square is 2; moreover, the running time per trial is
O(len(p)?), and hence the expected running time of this probabilistic search algo-
rithm is O(len(p)?).

12.5.2 Prime-power modulus

Let p be an odd prime, let a be an integer relatively prime to p, and let e > 1 be
an integer. We know that a is a quadratic residue modulo p° if and only if a is a
quadratic residue modulo p. Suppose that a is a quadratic residue modulo p, and
that we have found an integer b such that b> = a (mod p), using, say, one of the
procedures described in §12.5.1. From this, we can easily compute a square root
of a modulo p° using the following technique, which is known as Hensel lifting.
More generally, suppose that for some f > 1, we have computed an integer
b satisfying the congruence b*> = a (mod p/), and we want to find an integer c
satisfying the congruence ¢? = a (mod p/*h. Clearly, if ¢? = a (mod p/*1), then
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¢? = a (mod p/), and so ¢ = +b (mod p’). So let us set ¢ = b+ p/ h, and solve for
h. We have

= (b+p'h)? = b +2bp" h+ p*' W* = b + 2bp” h (mod p/ ).
So we want to find an integer # satisfying the linear congruence
2bp"h = a—b* (mod p/*). (12.8)

Since p 1 2b, we have gcd(2bpf ,p/™") = p/. Furthermore, since b> = a (mod p/),
we have p/ | (a — b?). Therefore, Theorem 2.5 implies that (12.8) has a unique
solution 4 modulo p, which we can efficiently compute as in Example 4.3.

By iterating the above procedure, starting with a square root of a modulo p, we
can quickly find a square root of @ modulo p®. We leave a detailed analysis of the
running time of this procedure to the reader.

12.5.3 Composite modulus

To find square roots modulo n, where n is an odd composite modulus, if we know
the prime factorization of n, then we can use the above procedures for finding
square roots modulo primes and prime powers, and then use the algorithm of the
Chinese remainder theorem to get a square root modulo n.

However, if the factorization of » is not known, then there is no efficient algo-
rithm known for computing square roots modulo n. In fact, one can show that
the problem of finding square roots modulo # is at least as hard as the problem of
factoring n, in the sense that if there is an efficient algorithm for computing square
roots modulo 7, then there is an efficient (probabilistic) algorithm for factoring n.

We now present an algorithm to factor n, using a modular square-root algorithm
A as a subroutine. For simplicity, we assume that A is deterministic, and that for all
n and for all @ € (Z¥)?, A(n, ) outputs a square root of a. Also for simplicity, we
shall assume that # is of the form n = pq, where p and g are distinct, odd primes.
In Exercise 12.15 below, you are asked to relax these restrictions. Our algorithm
runs as follows:

p & LY, d — ged(rep(p),n)
if d > 1 then
output d
else
a— 2, p — An,a)
if f==xp
then output “failure”
else output ged(rep(f — '), n)
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Here, Z! denotes the set of non-zero elements of Z,. Also, recall that rep(f)
denotes the canonical representative of f.

First, we argue that the algorithm outputs either “failure” or a non-trivial factor
of n. Clearly, if § ¢ Z, then the value d computed by the algorithm is a non-trivial
factor. So suppose f € Z;. In this case, the algorithm invokes A on inputs » and
a = p?, obtaining a square root ' of a. Suppose that f # +f’, and sety := f— f'.
What we need to show is that gcd(rep(y), n) is a non-trivial factor of n. To see this,
consider the ring isomorphism of the Chinese remainder theorem

0: Zn—Zpx7Zy
laln ¥ ([alp, [aly).

Suppose 0(f') = (B}, ). Then the four square roots of « are

B =067 BBy —F =07 (=B ~By), 07" (=P}, By, 67 (8. ~F,).
The assumption that f # +f’ implies that (f) = (=f,, §;) or 6(f) = (], —p5). In
the first case, O(y) = (—2[3;,0), which implies ged(rep(y), n) = q. In the second
case, 0(y) = (0, —2,6&), which implies gcd(rep(y), n) = p.

Second, we argue that P[F] < 1/2, where F is the event that the algorithm
outputs “failure.” Viewed as a random variable, f§ is uniformly distributed over
7. Clearly, P[F | p ¢ Z*] = 0. Now consider any fixed &’ € (Z*)?. Observe
that the conditional distribution of § given that > = ' is (essentially) the uniform
distribution on the set of four square roots of a’. Also observe that the output of A

depends only on n and f2, and so with respect to the conditional distribution given
that #> = o, the output f’ of A is fixed. Thus,

PIFIf =d1=Plp=2p | =dl=1/2.
Putting everything together, using total probability, we have

PIFI=PIF|BEZIPIB¢Z;1+ ), PIF|F =aIPIF =]

o' €(Zy)?

1
=0-PIpEZ1+ D, 5 Pl =dl<

o' €(Zy)?

N —

Thus, the above algorithm fails to split n with probability at most 1/2. If we like,
we can repeat the algorithm until it succeeds. The expected number of iterations
performed will be at most 2.

EXERCISE 12.7. Let p be an odd prime, and let f € Z,[X] be a polynomial with
0 < deg(f) < 2. Design and analyze an efficient, deterministic algorithm that
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takes as input p, f, and an element of Zj \ (Z;j)z, and which determines if f has
any roots in Z,, and if so, finds all of the roots. Hint: see Exercise 7.17.

EXERCISE 12.8. Show how to deterministically compute square roots modulo
primes p = 5 (mod 8) in time O(len(p)?).

EXERCISE 12.9. This exercise develops an alternative algorithm for computing
square roots modulo a prime. Let p be an odd prime, let § € Z*, and set a := f°.
Define B, := {y € Z, : y* —a € (Z})*}.

(a) Show that B, = {y € Z, : g(y) = 0}, where

g =X =P V2 x+pr V2 ez, X]

(b) Lety € Z, \ By, and suppose y? # a. Let u, v be the uniquely determined
elements of Z, satisfying the polynomial congruence

u+vX =@ -X)?Y2 (mod X? - a).

Show that 4 =0 and v=2 = a.

(c) Using parts (a) and (b), design and analyze a probabilistic algorithm that
computes a square root of a given a € (Z;‘;)2 in expected time O(len(p)?).

Note that when p — 1 = 2"m (m odd), and A is large (e.g., h ~ len(p)/2), the
algorithm in the previous exercise is asymptotically faster than the one in §12.5.1;
however, the latter algorithm is likely to be faster in practice for the typical case
where £ is small.

EXERCISE 12.10. Show that the following two problems are deterministic, poly-
time equivalent (see discussion just above Exercise 11.10 in §11.3):

(a) Given an odd prime p and a € (Z;)Z, find § € Z;S such that g = a.
(b) Given an odd prime p, find an element of Z; \ (Z;‘;)z.

EXERCISE 12.11. Design and analyze an efficient, deterministic algorithm that
takes as input primes p and ¢, such that ¢ | (p — 1), along with an element a € Z7,
and determines whether or not « € (Z;)q .

EXERCISE 12.12. Design and analyze an efficient, deterministic algorithm that
takes as input primes p and g, such that g | (p — 1) but ¢° 1 (p — 1), along with an
element a € (Z;)q , and computes a gth root of a, that is, an element § € Z}‘; such
that 9 = a.

EXERCISE 12.13. Design and analyze an algorithm that takes as input primes p
and g, such that ¢ | (p — 1), along with an element a € (Z;)q , and computes a gth
root of a. (Unlike Exercise 12.12, we now allow ¢> | (p—1).) Your algorithm may
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be probabilistic, and should have an expected running time that is bounded by ¢'/2
times a polynomial in len(p). Hint: Exercise 4.13 may be useful.

EXERCISE 12.14. Let p be an odd prime, y be a generator for Z?, and a be any
element of Z;,. Define

1 iflog,a>(p—1)/2

B(p.v.@) ::{ 0 iflog,a < (p—1)/2.

Suppose that there is an algorithm that efficiently computes B(p, y, a) for all p,y, @
as above. Show how to use this algorithm as a subroutine in an efficient, proba-
bilistic algorithm that computes log, « for all p,y, a as above. Hint: in addition to
the algorithm that computes B, use algorithms for testing quadratic residuosity and
computing square roots modulo p, and “read off” the bits of log, a one at a time.

EXERCISE 12.15. Suppose there is a probabilistic algorithm A that takes as input
a positive integer n, and an element @ € (Z})?. Assume that for all n, and for a
randomly chosen a € (Z)?, A computes a square root of a with probability at least
0.001. Here, the probability is taken over the random choice of @ and the random
choices of A. Show how to use A to construct another probabilistic algorithm
A’ that takes n as input, runs in expected polynomial time, and that satisfies the
following property:

for all n, A’ outputs the complete factorization of n into primes with
probability at least 0.999.

EXERCISE 12.16. Suppose there is a probabilistic algorithm A that takes as input
positive integers n and m, and an element a € (Z;)™. It outputs either “failure,”
or an mth root of a. Furthermore, assume that A runs in expected polynomial
time, and that for all » and m, and for randomly chosen @ € (Z;)™, A succeeds
in computing an mth root of a with probability e(n, m). Here, the probability is
taken over the random choice of a, as well as the random choices made during the
execution of A. Show how to use A to construct another probabilistic algorithm A’
that takes as input n, m, and a € (Z})™, runs in expected polynomial time, and that
satisfies the following property:

if e(n,m) > 0.001, then for all a € (Z;)", A’ computes an mth root
of a with probability at least 0.999.

12.6 The quadratic residuosity assumption

Loosely speaking, the quadratic residuosity (QR) assumption is the assumption
that it is hard to distinguish squares from non-squares in Z;, where # is of the form
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n = pq, and p and q are distinct primes. This assumption plays an important role
in cryptography. Of course, since the Jacobi symbol is easy to compute, for this
assumption to make sense, we have to restrict our attention to elements of Ker J,,,
where J, : Z¥ — {1} is the Jacobi map. We know that (Z¥)> C KerJ, (see
Exercise 12.3). Somewhat more precisely, the QR assumption is the assumption
that it is hard to distinguish a random element in Ker J,, \ (ZZ)2 from a random
element in (ZZ)2, given n (but not its factorization!).

To give a rough idea as to how this assumption may be used in cryptography,
assume that p = ¢ = 3 (mod 4), so that [-1],, € KerJ, \ (Zj)z, and moreover,
KerJ, \ (Zﬁ)2 = [—l]n(Zz)2 (see Exercise 12.4). The value n can be used as a
public key in a public-key cryptosystem (see §4.7). Alice, knowing the public key,
can encrypt a single bit b € {0,1} as f := (=1)’a?, where Alice chooses a € Z*
at random. The point is, if b = 0, then g is uniformly distributed over (Zz)z, and
if b = 1, then g is uniformly distributed over Ker J,, \ (ZZ)Z. Now Bob, knowing
the secret key, which is the factorization of n, can easily determine if § € (Z,,*)2
or not, and hence deduce the value of the encrypted bit b. However, under the QR
assumption, an eavesdropper, seeing just #» and f, cannot effectively figure out what
bis.

Of course, the above scheme is much less efficient than the RSA cryptosystem
presented in §4.7, but nevertheless, has attractive properties; in particular, its secu-
rity is very closely tied to the QR assumption, whereas the security of RSA is a bit
less well understood.

EXERCISE 12.17. Suppose that A is a probabilistic algorithm that takes as input n
of the form n = pq, where p and ¢ are distinct primes such that p = ¢ = 3 (mod 4).
The algorithm also takes as input « € KerJ,, and outputs either 0 or 1. Fur-
thermore, assume that A runs in expected polynomial time. Define two random
variables, X, and Y/, as follows: X, is defined to be the output of A on input » and
a value a chosen at random from Ker J,,\ (Zﬁ)z, and Y, is defined to be the output of
A on input n and a value a chosen at random from (Z:)z. In both cases, the value
of the random variable is determined by the random choice of @, as well as the
random choices made by the algorithm. Define e(n) := |P[X, = 1] — P[Y,, = 1]|.
Show how to use A to design a probabilistic, expected polynomial time algorithm
A’ that takes as input n as above and a € Ker J,, and outputs either “square” or
“non-square,” with the following property:

if e(n) > 0.001, then for all « € Ker J,, the probability that A’
correctly identifies whether a € (Z,’;)2 is at least 0.999.

Hint: use the Chernoff bound.
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EXERCISE 12.18. Assume the same notation as in the previous exercise. Define
the random variable X/, to be the output of A on input » and a value a chosen
at random from Ker J,. Show that |[P[X] = 1] — P[Y, = 1]| = &(n)/2. Thus,
the problem of distinguishing Ker J,, from (Z*)? is essentially equivalent to the
problem of distinguishing Ker J,, \ (Z*)? from (Z})2.

12.7 Notes

The proof we present here of Theorem 12.1 is essentially the one from Niven and
Zuckerman [72]. Our proof of Theorem 12.5 follows closely the one found in Bach
and Shallit [11].

Exercise 12.6 is based on Solovay and Strassen [99].

The probabilistic algorithm in §12.5.1 can be made deterministic under a gen-
eralization of the Riemann hypothesis. Indeed, as discussed in §10.5, under such
a hypothesis, Bach’s result [10] implies that the least positive integer that is not
a quadratic residue modulo p is at most 2 log p (this follows by applying Bach’s
result with the subgroup (Z;‘;)2 of Z). Thus, we may find the required element
Y € Zy \ (Z)? in deterministic polynomial time, just by brute-force search. The
best unconditional bound on the smallest positive integer that is not a quadratic
residue modulo p is due to Burgess [22], who gives a bound of p**°() where
a = 1/(4+/e) ~ 0.15163.

Goldwasser and Micali [41] introduced the quadratic residuosity assumption to
cryptography (as discussed in §12.6). This assumption has subsequently been used
as the basis for numerous cryptographic schemes.



